
Brightspot Front End Training



Agenda

1. FE stack and responsibilities overview
2. Root styleguide and Views
3. Styleguide application 
4. Frontend bundle
5. Handlebars
6. Javascript
7. Styling
8. JSON for examples and configuration
9. Code Example



Overview



What is FE at Brightspot?

FE development on Brightspot encompasses everything 
you’d expect as a front end developer (HTML, 
Templating, CSS, JS). But in addition, it also includes 
controls to help create views and to incorporate 
publishing features into Brightspot. 



Our FE stack

● JSON (for configuration & views)
● Handlebars (HTML templates)
● Less (CSS preprocessor)
● Javascript using ES6 syntax 
● Webpack (module bundler)
● Yarn (automate workflow)
● Node.js (running local styleguide)



Root Styleguide
The glue between backend and 

frontend



Root Styleguide concepts

● Originally lived in the project root, hence the name
○ Now located in frontend/styleguide/, although older 

projects still have it in the root 
● Specifies views, which are collections of fields
● Each view requires a .json file and a .hbs file

○ The .hbs file should always be empty, it’s a renderer hook
● Each view results in a Java interface for the backend to 

implement



Root Styleguide concepts

● As FE developers, we create the JSON schema and fields, as that is the 
data we need to show on the site

● The BE devs do the data modeling, create modules inside the CMS, and 
create the View Models that place the data into the Views

● Our contract is the JSON file, as that creates the View. That’s the data that 
we need and because the View is auto generated off that data, the BE devs 
know what data they need to provide us. How they do that is up to the 
business. Could come from the CMS (most of the time it does), could come 
from a back end API, could be magic. You’ll learn about that tomorrow. 



Styleguide 
application



Styleguide application

● Styleguide is our Node.js application that runs locally and 
processes example JSON view files via our Handlebar 
renderers to simulate what is happening with CMS data entry 
and rendering on the web

● Uses a dev environment of webpack to compile our JS and 
CSS

● Since it’s using the exact same code and build systems that 
the real site does, it allows us to work locally, see our work 
instantly, and have trust that this same code will work correctly 
once deployed



Frontend 
Bundle



Frontend bundle overview

Originally called a theme, the bundle is the “front end” of the site. It is 
what we primarily work with as front end developers. It contains: 

● HBS - HTML renderers
● JS - for site interactivity
● Styling - CSS built from LESS files for styling
● Assets - SVG or static image assets that we do not want in the 

CMS
● JSON - Configuration and view examples



Handlebars
Rendering HTML



Handlebars overview

● Brightspot uses Handlebars as its templating language
● Handlebars provides strong separation between your templates, styles, and 

Javascript
● While it is defined as a logicless templating language, Brightspot provides a 

set of helpers that assist in the composition of templates
● Among those helpers include comparison helpers, logical helpers, math 

helpers, and more. You also have the option to even create your own 
helpers via Javascript (comprehensive collection here: 
http://docs.brightspot.com/themes/templating/helpers.html)

http://docs.brightspot.com/themes/templating/helpers.html


Handlebars helpers

● {{eq}} {{gt}} {{lt}} {{and}} {{or}}
○ Useful comparison helpers that are not in Handlebars by 

default
○ Great for moving through item arrays with some logic or 

conditional rendering

● {{set}} and {{get}}
○ Allow us to pass values from parent to children templates



Handlebars helpers for template reuse

● {{include}}
○ Literally includes another template within a template and 

passes current context
○ Supports template reuse 

● {{render}}
○ “Contextual rendering” concept, that allows us to render a 

specific style of a template 



Handlebars helper for image sizing

● {{resize}}
○ Directive to receive a specifically resized image from 

DIMS
○ Can be used along with {{set}} and {{get}} to allow for 

code reuse and contextual image sizing

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide
/image/ImageTag.hbs#L1

https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/sty
leguide/recipe/RecipeModule.hbs#L23

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/image/ImageTag.hbs#L1
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/image/ImageTag.hbs#L1
https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/styleguide/recipe/RecipeModule.hbs#L23
https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/styleguide/recipe/RecipeModule.hbs#L23


Javascript
Let’s make things interactive



Javascript Overview

● ES6 written JS that is a mixture of classes and custom 
elements

● Use Babel to transpile JS into browsers we need to 
support

● Webpack packages our JS into a combined JS and 
chunks



Javascript Custom Elements

● We mostly use Custom Elements to bind JS to the DOM
● For most content driven “static” websites, there is no need for 

a full JS framework, as there is no state or views to handle
● Allows us to use JS to make the site more interactive and 

enhance the HTML vs use it for rendering
● Example: 

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/stylegui
de/carousel/Carousel.js

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/carousel/Carousel.js
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/carousel/Carousel.js


Styling
Let’s make things look good



CSS overview

● LESS as the CSS preprocessor
● BEM style syntax for class/element naming vs full OOCSS

○ CSS changes and bug fixes are less likely to create regression issues
○ Allows for multiple developers to work together more easily



CSS continued

● Use descriptive names for modules/components and then use 
BEM to name their elements

● Use LESS to abstract certain styles 
○ Allows us to use LESS extends and mixins, depending on the use 

case to abstract styles

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styl
es/default/page/list/PageList.less

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styl
es/default/page/list/PageListStandardA.less

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/page/list/PageList.less
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/page/list/PageList.less
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/page/list/PageListStandardA.less
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/page/list/PageListStandardA.less


CSS vars and LESS vars

● CSS Vars allow us to set values, whether in CSS or inline HTML
● Allows us to create a pattern to set CSS vars through CMS editorial 

fields to allow more customization for editors
● Use LESS vars for places where variables are helpful, but editorial 

overrides are not really necessary

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/global/
Colors.hbs

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/d
efault/global/Colors.less

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/d
efault/page/Page-header.less#L14

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/global/Colors.hbs
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/global/Colors.hbs
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/global/Colors.less
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/global/Colors.less
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/page/Page-header.less#L14
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/styles/default/page/Page-header.less#L14


JSON
View examples and 

configuration



JSON for view examples

● JSON view examples are used in the frontend bundle to 
simulate how the CMS is going to fill out views

● This allows us to create examples of content types and entire 
pages locally 

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/a
rticle/ArticlePage.json

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/p
age/Page.json

https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/style
guide/recipe/RecipeModule.json

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/article/ArticlePage.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/article/ArticlePage.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/Page.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/Page.json
https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/styleguide/recipe/RecipeModule.json
https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/styleguide/recipe/RecipeModule.json


JSON config files - *.config.json

● Configuration files are a mechanism to define properties which impacts the way a 
bundle interacts with Brightspot and the Styleguide application

● Your configuration files contain:
○ Image size options
○ Additional fields that the FE can add into the CMS
○ Style Variations of content types
○ Configuration options for the Styleguide application

● Configuration files may be defined at the root of your styleguide directory or in a 
subdirectory. When placed in a subdirectory it is a best practice to keep your 
configuration local to the components in the same directory. If you accidentally define 
a configuration for a component outside of the same directory, Styleguide will try to 
warn you

● The global configuration file lives in the root of your Styleguide directory
● At runtime and build, all the *.config.json files are actually combined into one large 

configuration



JSON config for image sizing

● Image sizes are defined in a configuration file at the root of your 
theme. To define an image, you will at a minimum need to define the 
width (or maximumWidth) and height (or maximumHeight)

● Once defined, these image sizes can be used with the {{resize}} 
helper to request those particular images from DIMS

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/_image
Sizes.config.json

 

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/_imageSizes.config.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/_imageSizes.config.json


JSON config for FE fields

● We can specify additional fields that are added to the styles 
tab in the CMS, which allow editors additional control over 
certain styles of content types

● These fields only persist within this particular front end bundle, 
and are not part of that content type’s data

● Very useful for additional styling options for modules, such as 
background colors, image alignements, etc

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-d
efault/styleguide/_fields.config.json

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-d
efault/styleguide/page/promo/_PagePromoModule.config.json

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/_fields.config.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/_fields.config.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/promo/_PagePromoModule.config.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/promo/_PagePromoModule.config.json


JSON config for styles of content types

● Allows us to define style variations of content types
● Powerful concept that lets us create many different “looks” of a 

content type, and the same data schema
● For example, style variations of the PageList, PagePromo, and 

PagePromoModule content types are used to assemble lots of 
pages like the Homepage, Section Pages, etc

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/pag
e/list/_PageList.config.json

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/pag
e/promo/_PagePromoModule.config.json

https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/list/_PageList.config.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/list/_PageList.config.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/promo/_PagePromoModule.config.json
https://github.com/perfectsense/training/blob/develop/frontend/bundles/bundle-default/styleguide/page/promo/_PagePromoModule.config.json


Code Examples



Creating the FE for RecipePage and RecipeModule

First, we work with both the BE team as well as product, to determine what the Recipe Page and Recipe Module JSON will look like. 
This establishes the contract between the FE and BE and it’s placed in the root styleguide: 
https://github.com/perfectsense/training/tree/exercise/recipe/frontend/styleguide/recipe

Once that is done, we can take the following steps to build the actual FE:

● Step 1 - Add JSON for example and the HBS renderers
https://github.com/perfectsense/training/tree/exercise/recipe/frontend/bundles/bundle-default/styleguide/recipe

● Step 2 - Add styling
https://github.com/perfectsense/training/tree/exercise/recipe/frontend/bundles/bundle-default/styleguide/styles/default/recipe

● Step 3 - Update Styleguide navigation to show example of the Recipe Page
https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/styleguide/_navigation.config.json
#L471

https://github.com/perfectsense/training/tree/exercise/recipe/frontend/styleguide/recipe
https://github.com/perfectsense/training/tree/exercise/recipe/frontend/bundles/bundle-default/styleguide/recipe
https://github.com/perfectsense/training/tree/exercise/recipe/frontend/bundles/bundle-default/styleguide/styles/default/recipe
https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/styleguide/_navigation.config.json#L471
https://github.com/perfectsense/training/blob/exercise/recipe/frontend/bundles/bundle-default/styleguide/_navigation.config.json#L471


Making a new List style
● Step 1 - Add JSON for example and the HBS renderer

https://github.com/perfectsense/training/pull/71/commits/9e3e282681f4a416034e8bd33e61d7301a68eeee

● Step 2 - Update configuration file for Lists to have new style show up in the CMS
https://github.com/perfectsense/training/pull/71/commits/d61b48a3bee0a10c022aa7d0fcf5eba41b0ce8e6

● Step 3 - Add styling for the new List style
https://github.com/perfectsense/training/pull/71/commits/14d8b06e327091ef0a517738e95fe8f64ecf3c9d

● Step 4 - Update Styleguide configuration to show example of new list style in application
https://github.com/perfectsense/training/pull/71/commits/ff2c21382f2b60aa8eeaa6ea7c925f1442e21ea5

● Update some more CSS styling
https://github.com/perfectsense/training/pull/71/commits/92dc9fb905a9ce9db5c0e6c65bc9a915200b3512

Link to whole PR: https://github.com/perfectsense/training/pull/71

https://github.com/perfectsense/training/pull/71/commits/9e3e282681f4a416034e8bd33e61d7301a68eeee
https://github.com/perfectsense/training/pull/71/commits/d61b48a3bee0a10c022aa7d0fcf5eba41b0ce8e6
https://github.com/perfectsense/training/pull/71/commits/14d8b06e327091ef0a517738e95fe8f64ecf3c9d
https://github.com/perfectsense/training/pull/71/commits/ff2c21382f2b60aa8eeaa6ea7c925f1442e21ea5
https://github.com/perfectsense/training/pull/71/commits/92dc9fb905a9ce9db5c0e6c65bc9a915200b3512
https://github.com/perfectsense/training/pull/71


April 25-26, 2024 | Reston, Virginia 
Hyatt Regency Reston

➔ Explore the latest trends and use cases from influential brands.
➔ Learn about the most recent innovations in the Brightspot CMS.
➔ Network with your peers and the Brightspot team in-person.

Attend for Free! Register Here 

https://www.brightspot.com/events/user-conference-2024

